
mergeMeltBestScoreCV
mergeMeltBestScoreCV.Rd
mergeMeltBestScoreCV returns a list of data frames that contain the best performance of the different learners without any focus on sparsity.
Usage
mergeMeltBestScoreCV(
list.results.digest,
k_catalogue = NULL,
score = "auc_",
penalty = 0,
min.kfold.nb = FALSE
)
Arguments
- list.results.digest:
a list of digest objects one for each learner used. For example, list(res.terda.digest, res.terga.digest, res.terbeam.digest)
- k_catalogue:
the k_catalogue that will serve to build the result matrix (default:NULL)
- score:
the name of the score that needs to be used for the whole dataset visualization.
- min.kfold.nb:
wether we should restrict all experiments in the smallest number of k-folds of a comparative analyses (default = FALSE)